
Version control and you
Einar Holsbø
mail: einar@cs.uit.no — web: 3inar.github.io
November 16th, 2016

mailto:einar@cs.uit.no
http://3inar.github.io

Take-home messages
• You’re one out of four types of analyst: try to get to the better

class

• You should think about the people you collaborate with

• You’re a programmer, so you may as well act like one

• Programmers use version control

Thesis of these talks: reproducible
code -> reproducible analysis ->

reproducible research

Classification of analysts
1. Does most work in Excel. R, stata, etc. considered “specialist tools”

2. Uses R or other real programming environment, keeps code in files,
file names for version control

3. Like #2, with real version control, a programming style guide, peer
review

4. Like #3, but more software engineering-savvy. Automated testing,
modular code, proper documentation, packages, etc., etc.

http://ellisp.github.io/blog/2016/09/16/version-control

http://ellisp.github.io/blog/2016/09/16/version-control

Classification of analysts
1. Does most work in Excel. R, stata, etc. considered “specialist tools”

2. Uses R or other real programming environment, keeps code in files,
file names for version control

3. Like #2, with real version control, a programming style guide, peer
review

4. Like #3, but more software engineering-savvy. Automated testing,
modular code, proper documentation, packages, etc., etc.

http://ellisp.github.io/blog/2016/09/16/version-control

+++ complexity

http://ellisp.github.io/blog/2016/09/16/version-control

Classification of analysts
1. Does most work in Excel. R, stata, etc. considered “specialist tools”

2. Uses R or other real programming environment, keeps code in files,
file names for version control

3. Like #2, with real version control, a programming style guide, peer
review

4. Like #3, but more software engineering-savvy. Automated testing,
modular code, proper documentation, packages, etc., etc.

http://ellisp.github.io/blog/2016/09/16/version-control

+++ complexity
+++ professionalism

http://ellisp.github.io/blog/2016/09/16/version-control

Class 1: the excel-analyst

Class 2: uses R

Class 3: version control, style guide, peer review

https://git-scm.com/about

https://git-scm.com/about

Class 4: basically a software engineer

https://wiki.teamfortress.com/wiki/File:Engineertaunt1.PNG

https://wiki.teamfortress.com/wiki/File:Engineertaunt1.PNG

Class 1 & 2: hard to work with

Class 3 & 4: play well with others

I originally planned to reproduce some of the results on gene
expression, but decided not to.

(1) First I had to find out, by guessing and asking, who had
written the R scripts. It turned out that several people had been
involved. No authors, no dates, no mention of who had written

what, several versions writing to the same file, etc.

(2) Some of the authors are no longer employed by ISM, others
are on leave, making it a harder job to get answers.

I concluded that it would probably take less time for me to write
my own scripts, despite that I have to learn R first.

–Kajsa Møllersen, distributed on nowac mailing list

I originally planned to reproduce some of the results on gene
expression, but decided not to.

(1) First I had to find out, by guessing and asking, who had
written the R scripts. It turned out that several people had been
involved. No authors, no dates, no mention of who had written

what, several versions writing to the same file, etc.

(2) Some of the authors are no longer employed by ISM, others
are on leave, making it a harder job to get answers.

I concluded that it would probably take less time for me to write
my own scripts, despite that I have to learn R first.

–Kajsa Møllersen, distributed on nowac mailing list

LACK OF PROVENANCE
+

LACK OF DOCUMENTATION
=

UNPROFESSIONAL
& UNREPRODUCIBLE

https://github.com/kbroman/datasciquotes

Your closest collaborator is you
six months ago, but you don't

reply to emails.

https://github.com/kbroman/datasciquotes

Version control: Git and friends

• A sane way to keep track of changes to your analysis

• A structured way to collaborate on code

• Manages provenance

How to Git locally

• git init

• git status

• git add

• git commit

Git demo

Git with friends: push and pull

v1

a file on your computer

v1

a file on your computer

another
computer (remote)

v1

a file on your computer

another
computer (remote)

git push

v1

a file on your computer

v1

same file on another
computer (remote)

v1

change + commit

v1

same file on another
computer (remote)

v2 v1

same file on another
computer (remote)

v2

change + commit

v1

same file on another
computer (remote)

v3 v1

same file on another
computer (remote)

v3 v1

same file on another
computer (remote)

git push

v3 v3git push

v3 v3

Remote is up-to-date

v3 v3

Remote is up-to-date
Also has version history (git log)

v3 v3

a file on your computer
same file on another
computer (remote)

v3 v3

my computer doesn’t have this project

v3 v3

git clone

v3 v3

v3

git clone

v3 v3

v3

change + commit

v3 v3

v4

v3 v3

v4

git push

v3 v4

v4

v3 v4

v4

git pull

v4 v4

v4

git pull

v4 v4

v4

REMOTE = SYNCHRONIZATION PT.

Local vs remote copy

• Local copy is yours, no-one can see it unless you publish it by push
to remote

• Remote as synchronization point, get changes by pull

• Etiquette note: never push to remote if your code is broken

http://gunshowcomic.com/648

http://gunshowcomic.com/648

Some different remotes

• GitHub: 100% the most popular one. It’s a very nice website. I host
most of my code here. Public with possibility for private repos (free
with academic license)

• Ice-git: located at the UiT dep’t of computer science. It’s private. The
NOWAC documentation package lives here.

Honorable git mentions
• log

• clone

• checkout

• branch

• merge

• & so on

Branching/merging

• For keeping several versions or Branches of your code

• Eg. “development” and “release”

• Makes collaboration easier.

• You should learn about it, but learn the basics 1st.

https://try.github.io
Learn Git in 15 minutes: Go try all this, including branching, for yourself

https://try.github.io

SourceTree: a graphical user interface to git

https://www.sourcetreeapp.com/

https://www.sourcetreeapp.com/

Take-home messages again
• You’re one out of four types of analyst: try to get to the better

class

• You should think about the people you collaborate with

• You’re a programmer, so you may as well act like one

• Programmers use version control

Next time: Packages, GitHub

Links/References
• Github is a nice place to keep code: https://github.com/

• Github’s interactive guide to git: https://try.github.io

• We use Hadley Wickham’s style guide: http://adv-r.had.co.nz/
Style.html

• Why you need version control: http://ellisp.github.io/blog/2016/09/16/
version-control

https://github.com/
https://try.github.io
http://adv-r.had.co.nz/Style.html
http://ellisp.github.io/blog/2016/09/16/version-control

Links/References

• Karl Broman tutorials: http://kbroman.org/pages/tutorials

• A successful Git branching model: http://nvie.com/posts/a-
successful-git-branching-model/

http://kbroman.org/pages/tutorials
http://nvie.com/posts/a-successful-git-branching-model/

Thank you!
Einar Holsbø

einar@cs.uit.no

Slides available at
3inar.github.io/talks/

mailto:einar@cs.uit.no
http://3inar.github.io/talks/

