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Variable selection in genomics

— methods, challenges, and possibilities



Variable selection
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Variaple selection

Maybe aka. “Data mining”

|[dentitying a suitable sulbset of variables
as relevant for your response and the modeling thereof

(Identitying what is irrelevant and can be thrown away)



246 Anthropological Muscellanea.

ANTHROPOLOGICAL MISCELLANEA.

REGRESSION fowards MEDIOCRITY 77 HEREDITARY STATURE.
By Francis Garron, F.R.S., &c.

"'Wires Prates IX anp X.]

TH1S memoir contains the data upon which the remarks on the Law
of Regression were founded, that I made in my Presidential Address
to Section H, at Aberdeen. That address, which will appear in

due course in the Journal of the British Association, has already

been published in “ Nature,” September 24th. I reproduce here
the portion of it which bears upon regression, together with some
amplification where brevity had rendered it obscure, and I have added
copies of the diagrams suspended at the meeting, without which the
letterpress is necessarily difficult to follow. My object is to place
beyond doubt the existence of a simple and far-reaching law that
governs the hereditary transmission of, I believe, every one of those
simple qualities which all possess, though in unequal degrees. 1
once before ventured to draw attention to this law on far more
slender evidence than I now possess.

F.

1886
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2 variables, 100s of observations
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Rothamsted experimental station
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6 variables, “enough” observations



Rothamsted experimental station

Experimental design

Small sample inference
Comparison of multiple contrasts
Hypothesis testing

&C.




Why do you have irrelevant variables®
— Ronald Fisher, probably
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~100 years later...

Genome [n.]| — the complete set of genes or genetic material
present in a cell or organism.

Genomics [n., pl.] — (treated as singular) the study of the
structure, function, evolution, and mapping of genomes.



~100 years later...

-ome [suffix] — “all of them/it”
-omics [suffix] — the study of all the different things

(my interpretation)



Central dogma of molecular biology
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Central dogma of molecular biology

Crick, F. (1970). Central dogma of molecular biology. Nature, 227(5258):561.
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Central dogma of molecular biology

Crick, F. (1970). Central dogma of molecular biology. Nature, 227(5258):561.

Transcriptomics [n.]

subfield to genomics to do with gene transcripts
and the function of the genome.

- O >0 0O

MRNA
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20.000




0 why variable selection”

20.000




SO why variable selection”

The computer as both
problem and solution




. Genomicslight: 36 measurements, 20 obs
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Want to find true signal, discard noise



Vlessage



Vlessage

(1) Old times: caretul choice of variables; These times: measure everything



Vlessage

(1) Old times: caretul choice of variables; These times: measure everything
(1) In genomics there are many variables to choose from.



Vlessage

(1) Old times: caretul choice of variables; These times: measure everything
(1) In genomics there are many variables to choose from.
(111) So little known that caretul choice of variables is virtually impossible



Vlessage

(1) Old times: caretul choice of variables; These times: measure everything
(1) In genomics there are many variables to choose from.
(111) So little known that caretul choice of variables is virtually impossible
(Iv) Be careful



Variable selection in genomics

— methods, challenges, and possibilities



methods



2 Leaving genomics behind, mostly
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| Inear mode|

y = po+ 0121+ ... + Paxd
response = » weights X variables
outcome of interest measurements

find the (8s/weights
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Fllters

rank variables mm  select "best” ones m  put in modadel

t.test(x_1, v) .. p<.1,top 10, etc. maybe linear



Some transcriptome “filters”

e Significance analysis of microarrays (SAM) (also SAMSeq)
* [ inear models for microarray/RNASeqg data (LIMMA)

o K top-scoring pairs (K-tsp)



A typical taxonomy

* Wrappers
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Wrappers

metrics: R?, empirical risk, ...

evaluate fit

D
» %),

candidate subset m put in model

stagewise,

. . mavbe linear
simulated annealing, ... y



A typical taxonomy

e Embedded methods



Fmbedded

Combined model estimation and variable selection



Fmbedded

Combined model estimation and variable selection

optimize model fit — model complexity
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N << O

y = Po+ Lix1 + ...+ Baxg

Standard rule-of-thumb calculations suggest
10-20 observations per parameter:

200 000 may be too few!
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N << O

y = Po+ Lix1 + ...+ Baxg

|dea: constrain the solution g to lie within a certain region

Eg find B s.t. Z B <t



y= Po+ L1x1+ ...+ Baxy

P2 1 A®
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“I’idge”

Figures from Hastie, Tibshirani, and Friedman: The Elements of Statistical Learning
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Figures from Hastie, Tibshirani, and Friedman: The Elements of Statistical Learning



y = Po+ Lrix1 + ...+ Baxg
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Figures from Hastie, Tibshirani, and Friedman: The Elements of Statistical Learning



y = Po+ Lrix1 + ...+ Baxg

t usually a data-dependent decision

Figures from Hastie, Tibshirani, and Friedman: The Elements of Statistical Learning
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measure of model complexity

“optimize model fit — model complexity”
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Figure from Christophe Giraud “Introduction to High-Dimensional Statistics”




End-result: a model with many coefficients =0

Figure from Christophe Giraud “Introduction to High-Dimensional Statistics”
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Coefficients biased away from 0  “overfitting”



Filters and wrappers considered harmful

Collinearity introduces arbitrariness " instability



Filters and wrappers considered harmful

Standard errors too small ™ overconfidence



Filters and wrappers considered harmful

Use of arbitrary inclusion criteria



Filters and wrappers considered harmful

Even Iif we only care about predictions,
the overfitting should worry us




Embedded methods



Embedded methods

Also unstable under collinearity



Embedded methods

Only real contenders of penalized likelihood variety
(eg. LASSO)



Embedded methods

Difficult to sensibly use categorical variables



Embedded methods

Difficult to embed prior information
(pathway info &c.)



All variable-selected models difficult to interpret
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Post—selection inference



Post—selection inference

A significance test for the lasso

Richard Lockhart! Jonathan Taylor? Ryan J. Tibshirani®

Robert Tibshirani?

e " v o . ey ) v o . 2 . v o .
'Simon Fraser University, “Stanford University, *Carnegie Mellon University

Abstract

In the sparse linear regression setting, we consider testing the significance of the predictor
variable that enters the current lasso model, in the sequence of models visited along the lasso
solution path. We propose a simple test statistic based on lasso fitted values, called the covari-
ance test statistic, and show that when the true model is linear, this statistic has an Exp(1)
asymptotic distribution under the null hypothesis (the null being that all truly active variables
are contained in the current lasso model). Our proof of this result for the special case of the
first predictor to enter the model (i.e., testing for a single significant predictor variable against
the global null) requires only weak assumptions on the predictor matrix X. On the other hand,
our proof for a general step in the lasso path places further technical assumptions on X and
the generative model, but still allows for the important high-dimensional case p > n, and does
not necessarily require that the current lasso model achieves perfect recovery of the truly active
variables,

Classical inference treats hypothesis
as fixed; now it is often random



Post—selection inference

UiT Faculty of Science and Technology
Department of Computer Science
THE ARCTIC

UNIVERSITY . L . .

OF NORWAY Small data: practical modeling issues in human-model -omic
data
Einar Holsbe
A Dissertation for the degree of Philosophiae Doctor — 2018

Resampling, data splitting possible,
can be hard to get right




Post—selection inference

Bayesian methodology mostyl sidesteps the inferential problems.

More work to model, compute-heavy. “Subjective.”



Reducing number of variables blinded to Y



Reducing number of variables blinded to Y

e Remove low-variance variapbles



Reducing number of variables blinded to Y

e Remove low-variance variapbles

 Remove mostly-missing variables



Reducing number of variables blinded to Y

e Remove low-variance variapbles
 Remove mostly-missing variables

o Statistical tricks to combine collinear variables &c. (see refs)



Reducing number of variables blinded to Y

e Remove low-variance variables
 Remove mostly-missing variables
o Statistical tricks to combine collinear variables &c. (see refs)

 Domain knowledge
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10 summarize

- Variable selection is a modern “problem”
- Genomics is an archetypal application area

Penalized likelihood methods probably most reliable
Inference is tricky

Domain knowledge is both a challenge and a possibility



Data seldom, if ever, speaks for itself. o use data effectively
requires valid and revealing conceptual frameworks for
understanding and interpreting patterns in data.

Nobel laureate Lars Hansen (emphasis mine).

https://gz.com/1417105/lars-hansen-a-nobel-winning-economist-has-tips-for-dealing-with-uncertainty/






Blollograpny

Harrell: "Regression modeling strategies”
Hastie &al.: "Elements of statistical learning”

Hira & Gillies: “A review of feature selection and feature extraction
methods applied on microarray data’

The methods SAM, LIMMA, and k-TSP



