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Act I: “Boy Bitten by a Lizard” (1590s)



–Eiliv Lund, 4.5 years ago, quote made up

Can we predict breast cancer metastasis from blood samples?



Metastasis is the spread of cancer in the body
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Data source: Siegel, R. L., Miller, K. D. and Jemal, A. (2017), Cancer statistics, 2017. CA: A Cancer Journal for Clinicians, 67: 7-30. doi:10.3322/caac.21387
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Metastasis is the spread of cancer in the body

Goal: predict it, win the Nobel prize 🏅



Norwegian Women and Cancer

• Prospective population-based cohort that tracks 34% (170 000) of 
all Norwegian women born between 1943-57. 

• The data collection started in NOWAC in 1991. Includes blood 
samples from 50.000 women, as well as more than 300 biopsies. 

• Now contains various -omics material: microarray mRNA, miRNA, 
methylation, metabolomics, and RNA-seq. 
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Nested case–control
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Prospective design nice because 
recruitment is blinded to outcome 

and exposure



Prospective design nice because 
recruitment is blinded to outcome 

and exposure

Low bias
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Data at a glance
dim(gene_expression)
## [1]    88 12404

summary(days_to_diagnosis)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.
##     6.0   117.8   189.5   186.8   269.2   358.0

summary(metastasis)
## FALSE  TRUE
##    66    22

table(metastasis, stratum)
##           stratum
## metastasis screening interval clinical
##      FALSE        43       10       13
##      TRUE          6        6       10
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These are “small data” & we 
should be careful with them



A computer scientist’s guide to precision medicine

• Step 1: pick some models 

• Step 2: pick some scoring rules/performance metrics 

• Step 3: “classification”



Scoring rule examples 
(aka. loss functions, aka. metrics)

• Accuracy: how many did we get right? 

• Precision: how many correct “success” predictions did we do 

• Recall: how many of the true successes did we detect



Scoring rule examples 
(aka. loss functions, aka. metrics)

p > .5? something else?



Decoupling score and decision threshold

• AUC: the probability of ranking success higher than failure

(aka. concordance probability)



Just trying some methods & scores
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Figures from Hastie, Tibshirani, and Friedman: The Elements of Statistical Learning

“lasso”“ridge”
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“ElasticNet”
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“ElasticNet”

Tradeoff between penalty types, controls “roundness”
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Act II: When you are 
engulfed in flames
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Small data: sample size is more or less fixed in the 
human model

Typical sample sizes in transcriptomics

4 9 21 56 176 614 3372 18736

n = 1178

Ethics, economy, logistics limit access to human obs.



Some “technical” sources of variation

• The big classic one: sample size 

• Scoring rule 

• Validation procedure



Yet another scoring rule

Brier’s score is the mean squared errors of predicted probabilities

n�1
X

(p̂i � pi)
2

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>



Some risk surfaces

log

p

1� p

= 1 + x,

x ⇠ U [�6, 6]
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(risk = expected loss)
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Brier

Brighter is better
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Some “technical” sources of variation

• The big classic one: sample size 

• Scoring rule 

• Validation procedure



Validation

• Holdout data 

• Cross-validation 

• Repeat CV 

• The Bootstrap



Holdout data
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Holdout data

i) Fit model

ii) Calculate score



Cross validation



Cross validation

i) Fit model

ii) Score



Cross validation

iii) Fit model

iv) Score



Cross validation

iii) Fit model

iv) Score

&c., &c.



Cross validation

xi) Summarize by mean, sd



Repeated cross validation

It’s exactly what you’d expect
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Bootstrap

&c., &c., &c.



Bootstrap

F̂ ⇠ F
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F̂ ⇤ ⇠ F̂
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Bootstrap

F̂ ⇤ ⇠ F̂
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“The bootstrap principle”



Relative efficiency of two estimators

For two estimators, T1, T2, of the same quantity :
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All else being equal, pick the less variable one



Relative efficiency of two estimators
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Some lessons

1. Small data: new observations are hard to get 

2. Optimize a less weird scoring rule 

3. Estimate with less variance
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Act III: Hold Fast



Brier score + Bootstrap
�� C H A P T E R � M E TA S TA S I S P R E D I C T I O N

model �.� model �.�
LIMMA-t .44 ± .30 .76 ± .20
SAM .46 ± .26 .75 ± .24
ANOVA-fs .51 ± .29 .75 ± .16
ANOVA-s .41 ± .57 .75 ± .38
t-test .65 ± 1.5 .74 ± .71
ANOVA-f .44 ± .25 .72 ± .21

intercept .5
stratum .49 ± .055
lasso .36 ± 1.4
ridge .81 ± 3.3

Table �.�: AUC presented as point estimate plus/minus two standard errors. Measures
the probability of forecasting a higher probability of metastasis for a ran-
domly chosen metastasis case than for a randomly chosen non-metastasis
case: higher is better. Model number refers to the equations in Section �.A.�.
Model �.� includes stratum as a predictor. Below the break are the four
baseline models.

The collected results for model �.� suggest some reason for optimism. Due to
the size of the standard errors we must necessarily be uncertain about even the
first significant digit of our point estimates. But even accounting for uncertainty
there seems to be predictive information better than random guess. As in the
simulations, there is not too much difference between the different methods,
perhaps apart from the simple t-test, for which we observe much variance.
Note that both SAM and LIMMA are flexible frameworks and we could have
accounted for stratum and followup in either. Our comparison is between using
this information and various ways of not using it, and there is no reason to
believe that either framework should perform poorly if we were to use more
refined models there.

Table �.� shows the predictor set stability as point estimate plus/minus two
standard errors. Stability is in general very low, and the standard errors suggest
that there is even some uncertainty to the order of magnitude of the point
estimates. A possible interpretation is that the correlation between genes is
such that many different genes hold similar information. It is at least clear that
we need much more data if we want to find a stable set of predictor genes. If
we take the point estimates at face value, Table �.� reflects the fact that we see
lower uncertainty using ANOVA-f/fs in Tables �.� and �.�.

issue mentioned in the preamble to this chapter. For details see Section �.�.� and Section
�.�.

�.A A P P E N D I X: VA R I A B L E S E L E C T I O N M E T H O D S ��

model �.� model �.�
t-test .17 ± .45 .17 ± .33
ANOVA-fs .27 ± .13 .18 ± .10
SAM .34 ± .11 .20 ± .15
ANOVA-s .33 ± .22 .20 ± .25
ANOVA-f .31 ± .084 .21 ± .11
LIMMA-t .35 ± .14 .20 ± .17

intercept .19 ± .010
stratum .22 ± .029
lasso .27 ± .19
ridge .23 ± .30

Table �.�: Brier scores presented as point estimate plus/minus two standard errors.
Measures error in forecast probability: lower is better. Model number refers
to the equations in Section �.A.�. Model �.� includes stratum as a predictor.
Below the break are the four baseline models.

but it is noteworthy that the intercept-only model is among the best-calibrated.
The uncertainty is large enough that is difficult to say that any selection method
is better than any other. It is clear that the interaction with detection method in
model �.� improves calibration for all models. There is also lower uncertainty
in the ANOVA-f/fs models.

AUC or concordance probability is a measure of a model’s ability to discriminate
between outcomes: the higher the better. Brier score alone does not provide
full information about predictive performance; the intercept-only model is well-
calibrated but cannot be used for prediction at all. Random guess (or forecasting
a constant for every observation) yields AUC of .�; perfect discrimination yields
AUC of unity. Table �.� shows AUC as point estimate plus/minus two standard
errors in decreasing order by model �.�. Again the clearest signal is that the
added information from detection method is very important. Point estimates
improve markedly and standard errors generally decrease. Also here does use
of stratification and followup time in preselection reduce uncertainty.

The ridge regression baseline performance has a very good AUC point estimate,
but the standard error is very large. Too large: it is a theorem that the upper
bound on standard deviation in a variable 2 [0, 1] is 1

2 . This says something
about the imperfection of the jackknife as an estimator of standard error. The
blame lies at least in part with the correctional factor n�1n in Equation �.�, which
was originally defined heuristically. Since it is difficult to suggest a sensible
alternative, we choose to live with this.�

�. This was really the result of nesting a cross-validation in the bootstrap: the methodology

Concordance: 
Higher better, random guess is .5

Brier score: 
Lower better, null model is .19
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Below the break are the four baseline models.

but it is noteworthy that the intercept-only model is among the best-calibrated.
The uncertainty is large enough that is difficult to say that any selection method
is better than any other. It is clear that the interaction with detection method in
model �.� improves calibration for all models. There is also lower uncertainty
in the ANOVA-f/fs models.

AUC or concordance probability is a measure of a model’s ability to discriminate
between outcomes: the higher the better. Brier score alone does not provide
full information about predictive performance; the intercept-only model is well-
calibrated but cannot be used for prediction at all. Random guess (or forecasting
a constant for every observation) yields AUC of .�; perfect discrimination yields
AUC of unity. Table �.� shows AUC as point estimate plus/minus two standard
errors in decreasing order by model �.�. Again the clearest signal is that the
added information from detection method is very important. Point estimates
improve markedly and standard errors generally decrease. Also here does use
of stratification and followup time in preselection reduce uncertainty.

The ridge regression baseline performance has a very good AUC point estimate,
but the standard error is very large. Too large: it is a theorem that the upper
bound on standard deviation in a variable 2 [0, 1] is 1

2 . This says something
about the imperfection of the jackknife as an estimator of standard error. The
blame lies at least in part with the correctional factor n�1n in Equation �.�, which
was originally defined heuristically. Since it is difficult to suggest a sensible
alternative, we choose to live with this.�

�. This was really the result of nesting a cross-validation in the bootstrap: the methodology

Concordance: 
Higher better, random guess is .5

Brier score: 
Lower better, null model is .19



Brier score + Bootstrap
�� C H A P T E R � M E TA S TA S I S P R E D I C T I O N

model �.� model �.�
LIMMA-t .44 ± .30 .76 ± .20
SAM .46 ± .26 .75 ± .24
ANOVA-fs .51 ± .29 .75 ± .16
ANOVA-s .41 ± .57 .75 ± .38
t-test .65 ± 1.5 .74 ± .71
ANOVA-f .44 ± .25 .72 ± .21

intercept .5
stratum .49 ± .055
lasso .36 ± 1.4
ridge .81 ± 3.3

Table �.�: AUC presented as point estimate plus/minus two standard errors. Measures
the probability of forecasting a higher probability of metastasis for a ran-
domly chosen metastasis case than for a randomly chosen non-metastasis
case: higher is better. Model number refers to the equations in Section �.A.�.
Model �.� includes stratum as a predictor. Below the break are the four
baseline models.

The collected results for model �.� suggest some reason for optimism. Due to
the size of the standard errors we must necessarily be uncertain about even the
first significant digit of our point estimates. But even accounting for uncertainty
there seems to be predictive information better than random guess. As in the
simulations, there is not too much difference between the different methods,
perhaps apart from the simple t-test, for which we observe much variance.
Note that both SAM and LIMMA are flexible frameworks and we could have
accounted for stratum and followup in either. Our comparison is between using
this information and various ways of not using it, and there is no reason to
believe that either framework should perform poorly if we were to use more
refined models there.

Table �.� shows the predictor set stability as point estimate plus/minus two
standard errors. Stability is in general very low, and the standard errors suggest
that there is even some uncertainty to the order of magnitude of the point
estimates. A possible interpretation is that the correlation between genes is
such that many different genes hold similar information. It is at least clear that
we need much more data if we want to find a stable set of predictor genes. If
we take the point estimates at face value, Table �.� reflects the fact that we see
lower uncertainty using ANOVA-f/fs in Tables �.� and �.�.

issue mentioned in the preamble to this chapter. For details see Section �.�.� and Section
�.�.

�.A A P P E N D I X: VA R I A B L E S E L E C T I O N M E T H O D S ��

model �.� model �.�
t-test .17 ± .45 .17 ± .33
ANOVA-fs .27 ± .13 .18 ± .10
SAM .34 ± .11 .20 ± .15
ANOVA-s .33 ± .22 .20 ± .25
ANOVA-f .31 ± .084 .21 ± .11
LIMMA-t .35 ± .14 .20 ± .17

intercept .19 ± .010
stratum .22 ± .029
lasso .27 ± .19
ridge .23 ± .30

Table �.�: Brier scores presented as point estimate plus/minus two standard errors.
Measures error in forecast probability: lower is better. Model number refers
to the equations in Section �.A.�. Model �.� includes stratum as a predictor.
Below the break are the four baseline models.

but it is noteworthy that the intercept-only model is among the best-calibrated.
The uncertainty is large enough that is difficult to say that any selection method
is better than any other. It is clear that the interaction with detection method in
model �.� improves calibration for all models. There is also lower uncertainty
in the ANOVA-f/fs models.

AUC or concordance probability is a measure of a model’s ability to discriminate
between outcomes: the higher the better. Brier score alone does not provide
full information about predictive performance; the intercept-only model is well-
calibrated but cannot be used for prediction at all. Random guess (or forecasting
a constant for every observation) yields AUC of .�; perfect discrimination yields
AUC of unity. Table �.� shows AUC as point estimate plus/minus two standard
errors in decreasing order by model �.�. Again the clearest signal is that the
added information from detection method is very important. Point estimates
improve markedly and standard errors generally decrease. Also here does use
of stratification and followup time in preselection reduce uncertainty.

The ridge regression baseline performance has a very good AUC point estimate,
but the standard error is very large. Too large: it is a theorem that the upper
bound on standard deviation in a variable 2 [0, 1] is 1

2 . This says something
about the imperfection of the jackknife as an estimator of standard error. The
blame lies at least in part with the correctional factor n�1n in Equation �.�, which
was originally defined heuristically. Since it is difficult to suggest a sensible
alternative, we choose to live with this.�

�. This was really the result of nesting a cross-validation in the bootstrap: the methodology

Concordance: 
Higher better, random guess is .5

Brier score: 
Lower better, null model is .19

In short more lizards ahead



Reminder of likelihood penalties
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Need to choose t (aka lambda)



Risky procedure
# nested cv in bootstrap
boot <- boostrap_samples()
for (b in boot) {
  lambda <- cross_validate_glmnet(b)
}
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Risky procedure
# nested cv in bootstrap
boot <- boostrap_samples()
for (b in boot) {
  lambda <- cross_validate_glmnet(b)
}

i) train

ii) test



Risky procedure
# nested cv in bootstrap
boot <- boostrap_samples()
for (b in boot) {
  lambda <- cross_validate_glmnet(b)
}

i) train

ii) test

Bias toward           !!!!!!!!!
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Instead choose lambda by AIC
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ElasticNet, alpha = .5

+ =

Figures from Hastie, Tibshirani, and Friedman: The Elements of Statistical Learning
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ElasticNet, alpha = .5
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ElasticNet, alpha = .5
�� C H A P T E R � M E TA S TA S I S P R E D I C T I O N

model �.� model �.�
LIMMA-t .44 ± .30 .76 ± .20
SAM .46 ± .26 .75 ± .24
ANOVA-fs .51 ± .29 .75 ± .16
ANOVA-s .41 ± .57 .75 ± .38
t-test .65 ± 1.5 .74 ± .71
ANOVA-f .44 ± .25 .72 ± .21

intercept .5
stratum .49 ± .055
lasso .36 ± 1.4
ridge .81 ± 3.3

Table �.�: AUC presented as point estimate plus/minus two standard errors. Measures
the probability of forecasting a higher probability of metastasis for a ran-
domly chosen metastasis case than for a randomly chosen non-metastasis
case: higher is better. Model number refers to the equations in Section �.A.�.
Model �.� includes stratum as a predictor. Below the break are the four
baseline models.

The collected results for model �.� suggest some reason for optimism. Due to
the size of the standard errors we must necessarily be uncertain about even the
first significant digit of our point estimates. But even accounting for uncertainty
there seems to be predictive information better than random guess. As in the
simulations, there is not too much difference between the different methods,
perhaps apart from the simple t-test, for which we observe much variance.
Note that both SAM and LIMMA are flexible frameworks and we could have
accounted for stratum and followup in either. Our comparison is between using
this information and various ways of not using it, and there is no reason to
believe that either framework should perform poorly if we were to use more
refined models there.

Table �.� shows the predictor set stability as point estimate plus/minus two
standard errors. Stability is in general very low, and the standard errors suggest
that there is even some uncertainty to the order of magnitude of the point
estimates. A possible interpretation is that the correlation between genes is
such that many different genes hold similar information. It is at least clear that
we need much more data if we want to find a stable set of predictor genes. If
we take the point estimates at face value, Table �.� reflects the fact that we see
lower uncertainty using ANOVA-f/fs in Tables �.� and �.�.
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model �.� model �.�
t-test .17 ± .45 .17 ± .33
ANOVA-fs .27 ± .13 .18 ± .10
SAM .34 ± .11 .20 ± .15
ANOVA-s .33 ± .22 .20 ± .25
ANOVA-f .31 ± .084 .21 ± .11
LIMMA-t .35 ± .14 .20 ± .17

intercept .19 ± .010
stratum .22 ± .029
lasso .27 ± .19
ridge .23 ± .30

Table �.�: Brier scores presented as point estimate plus/minus two standard errors.
Measures error in forecast probability: lower is better. Model number refers
to the equations in Section �.A.�. Model �.� includes stratum as a predictor.
Below the break are the four baseline models.

but it is noteworthy that the intercept-only model is among the best-calibrated.
The uncertainty is large enough that is difficult to say that any selection method
is better than any other. It is clear that the interaction with detection method in
model �.� improves calibration for all models. There is also lower uncertainty
in the ANOVA-f/fs models.

AUC or concordance probability is a measure of a model’s ability to discriminate
between outcomes: the higher the better. Brier score alone does not provide
full information about predictive performance; the intercept-only model is well-
calibrated but cannot be used for prediction at all. Random guess (or forecasting
a constant for every observation) yields AUC of .�; perfect discrimination yields
AUC of unity. Table �.� shows AUC as point estimate plus/minus two standard
errors in decreasing order by model �.�. Again the clearest signal is that the
added information from detection method is very important. Point estimates
improve markedly and standard errors generally decrease. Also here does use
of stratification and followup time in preselection reduce uncertainty.

The ridge regression baseline performance has a very good AUC point estimate,
but the standard error is very large. Too large: it is a theorem that the upper
bound on standard deviation in a variable 2 [0, 1] is 1

2 . This says something
about the imperfection of the jackknife as an estimator of standard error. The
blame lies at least in part with the correctional factor n�1n in Equation �.�, which
was originally defined heuristically. Since it is difficult to suggest a sensible
alternative, we choose to live with this.�

�. This was really the result of nesting a cross-validation in the bootstrap: the methodology

Brier score

Fr
eq

ue
nc

y

0.04 0.08 0.12 0.16

0
15

0

Bootstrapped estimates

Concordance
Fr

eq
ue

nc
y

0.65 0.75 0.85 0.95

0
10

0
Stability

Fr
eq

ue
nc

y

0.05 0.15 0.25 0.35

0
15

0



ElasticNet, alpha = .5
�� C H A P T E R � M E TA S TA S I S P R E D I C T I O N

model �.� model �.�
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ANOVA-fs .51 ± .29 .75 ± .16
ANOVA-s .41 ± .57 .75 ± .38
t-test .65 ± 1.5 .74 ± .71
ANOVA-f .44 ± .25 .72 ± .21

intercept .5
stratum .49 ± .055
lasso .36 ± 1.4
ridge .81 ± 3.3

Table �.�: AUC presented as point estimate plus/minus two standard errors. Measures
the probability of forecasting a higher probability of metastasis for a ran-
domly chosen metastasis case than for a randomly chosen non-metastasis
case: higher is better. Model number refers to the equations in Section �.A.�.
Model �.� includes stratum as a predictor. Below the break are the four
baseline models.
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the size of the standard errors we must necessarily be uncertain about even the
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there seems to be predictive information better than random guess. As in the
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perhaps apart from the simple t-test, for which we observe much variance.
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believe that either framework should perform poorly if we were to use more
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perhaps apart from the simple t-test, for which we observe much variance.
Note that both SAM and LIMMA are flexible frameworks and we could have
accounted for stratum and followup in either. Our comparison is between using
this information and various ways of not using it, and there is no reason to
believe that either framework should perform poorly if we were to use more
refined models there.

Table �.� shows the predictor set stability as point estimate plus/minus two
standard errors. Stability is in general very low, and the standard errors suggest
that there is even some uncertainty to the order of magnitude of the point
estimates. A possible interpretation is that the correlation between genes is
such that many different genes hold similar information. It is at least clear that
we need much more data if we want to find a stable set of predictor genes. If
we take the point estimates at face value, Table �.� reflects the fact that we see
lower uncertainty using ANOVA-f/fs in Tables �.� and �.�.

issue mentioned in the preamble to this chapter. For details see Section �.�.� and Section
�.�.

�.A A P P E N D I X: VA R I A B L E S E L E C T I O N M E T H O D S ��

model �.� model �.�
t-test .17 ± .45 .17 ± .33
ANOVA-fs .27 ± .13 .18 ± .10
SAM .34 ± .11 .20 ± .15
ANOVA-s .33 ± .22 .20 ± .25
ANOVA-f .31 ± .084 .21 ± .11
LIMMA-t .35 ± .14 .20 ± .17

intercept .19 ± .010
stratum .22 ± .029
lasso .27 ± .19
ridge .23 ± .30

Table �.�: Brier scores presented as point estimate plus/minus two standard errors.
Measures error in forecast probability: lower is better. Model number refers
to the equations in Section �.A.�. Model �.� includes stratum as a predictor.
Below the break are the four baseline models.

but it is noteworthy that the intercept-only model is among the best-calibrated.
The uncertainty is large enough that is difficult to say that any selection method
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AUC or concordance probability is a measure of a model’s ability to discriminate
between outcomes: the higher the better. Brier score alone does not provide
full information about predictive performance; the intercept-only model is well-
calibrated but cannot be used for prediction at all. Random guess (or forecasting
a constant for every observation) yields AUC of .�; perfect discrimination yields
AUC of unity. Table �.� shows AUC as point estimate plus/minus two standard
errors in decreasing order by model �.�. Again the clearest signal is that the
added information from detection method is very important. Point estimates
improve markedly and standard errors generally decrease. Also here does use
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The ridge regression baseline performance has a very good AUC point estimate,
but the standard error is very large. Too large: it is a theorem that the upper
bound on standard deviation in a variable 2 [0, 1] is 1
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108 genes selected
�.� R E S U LT S ��

likely. This is a natural consequence of doing variable selection: “redundant”
information may shrink out of the model.

Table �.�: Resampling selection probability for the ��� elasticnet-selected genes.

GRK�a 0.853 C�orf��� 0.290 ANO� 0.221 FBLN� 0.157
GPATCH� 0.682 LOC������ 0.287 PTTG�IP 0.219 BLMH 0.156
GNGT� 0.474 RNF��� 0.280 �NDg�gVCd. . .b 0.218 FCRL� 0.149
PDGFDc 0.467 SULT�A� 0.278 USF� 0.216 TDRD� 0.143
FAM��B 0.457 ZNF��� 0.271 BCCIP 0.210 ACY� 0.142
PTPRN� 0.442 USE� 0.267 MGC����� 0.209 ZFP�� 0.142
CBLB 0.440 DNMT�A 0.267 GRK�a 0.207 SLIC� 0.138
PDCL 0.410 LOC������ 0.266 WTIP 0.205 PICK� 0.135
RASA� 0.380 CNTNAP� 0.265 BCL�� 0.204 RTN�IP� 0.134
C��orf�� 0.376 IL�RA 0.265 DLGAP� 0.200 CDCA�L 0.132
TCEB� 0.374 CCT� 0.264 HRAS 0.199 BEX� 0.131
CAPN� 0.354 R�HDM� 0.263 RAD� 0.189 FCAR 0.130
STK�� 0.351 MRPL�� 0.260 PRKCE 0.187 ANKRD�� 0.111
GUCY�A� 0.348 SLC��A� 0.256 UBAP�L 0.186 USP�� 0.109
ZDHHC�� 0.345 GNG� 0.255 BPI 0.186 KIAA���� 0.106
SULT�A� 0.336 PLA�G�C 0.251 DTX� 0.184 BRI�BP 0.106
Z�FIQGkeo. . .d 0.335 TCF� 0.248 LASS� 0.182 TUBA�A 0.105
FAM��A 0.328 uX��cu�f_. . .e 0.247 GSTT� 0.182 IDH� 0.102
rh��dQX��. . .f 0.324 C��orf��� 0.245 SPATA�� 0.182 DDX�� 0.100
LANCL� 0.323 VCL 0.242 IGLL� 0.172 ANKRD�� 0.094
SERPINE� 0.318 EZH� 0.242 SPG�A 0.172 TFG 0.087
ADIPOR� 0.314 PRPSAP� 0.237 PPAP�A 0.172 LILRA� 0.080
GPR��� 0.312 ISY� 0.235 NOTCH�NL 0.172 C�orf�� 0.078
PDGFDc 0.299 UGDH 0.234 TAF� 0.168 WDR�� 0.075
LOC������ 0.294 ABCF� 0.230 CCDC��B 0.166 AHCYL� 0.068
WEE� 0.293 C��orf� 0.229 LOC������ 0.158 HAUS� 0.068
ITM�C 0.291 VAV� 0.225 CDH� 0.157 MAD�L� 0.053

a. Two probes map to the same gene GRK�. Combined selection probability is �.��, implying
that both get selected together at least some of the time.

b. Illumina probe id �NDg�gVCdQkNdcg.Ko, missing annotation.
c. Two probes map to the same gene PDGFD. Combined selection probability is �.���.
d. Ilummina probe id Z�FIQGkeoCSiVAoKeg, missing annotation.
e. Illumina probe id uX��cu�f_VUIuXoST�, missing annotation.
f. Illumina probe id rh��dQX��hUS�uOpRQ, missing annotation.

Figure �.� shows the (log fold change) expression levels in each of the ���
selected genes for the metastasized and non-metastasized observations. The
shaded area shows the middle .� of the bootstrap distribution for difference
in medians between the two groups; the white notch shows the expectation
of this distribution, by which the genes are ordered. The black snake-shaped
line marks the two group medians. The non-metastasized median is usually
around zero, so the difference in medians is mostly dominated by the median
fold change of the metastasized observations. In other words, for these genes
the average case–control pair is similar in the non-metastasized group, while
the average pair is dissimilar in the metastasized group.
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Low selection frequencies: unstable signatures
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Some genes tend to be selected together
Co−selection heatmap
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data even under resampling.

Table �.�: Genes that tend to be selected together, ordered alphabetically.

ADIPOR� FAM��A LANCL� PTPRN� SULT�A�
C��orf�� GNG� LOC������ R�HDM� TCEB�
C�orf��� GNGT� LOC������ RASA� TCF�
CAPN� GPATCH� PDCL rh��dQX�. . . WEE�
CBLB GRK� PDGFD SERPINE� Z�FIQGkeo. . .
DNMT�A GUCY�A� PDGFD STK�� ZDHHC��
FAM��B ITM�C PRPSAP� SULT�A� ZNF���

�.� Conclusion

We have demonstrated predictability of metastasis in these data. We can, with
a high probability, rank case–control pairs in terms of predicted metastasis
probability. However we should not count the model itself as a reliable tool due
to poor calibration and stability, and since these results stem from exploratory
modeling we should be moderate in our expectations; further investigation is
needed to establish reliable results.

We provide ��� candidate predictor genes as an avenue for future research. We
are currently investigating their biological properties. An interesting statistical
investigation may be to review the importance of the stratification and how to
build this into a shrinkage model, as the results in the appendix below indicate
that this may lead to improvements. We believe however that it is necessary
to obtain independent data to be able to make any inference stronger than
general indication.

�.A Appendix: variable selection methods

In addition to the main results presented above we previously explored vari-
ous ad-hoc variable selection schemes. The results of these explorations are
not competitive compared with the above penalized likelihood model, but I
present them here for completeness and comparison. To make the next sections
complete we must define the followup time of a case. This is the number of
days between provision of the blood sample and the eventual diagnosis of
cancer. Although followup introduces a time aspect, these are not time series
data in the strictest technical sense. Each observation stems from a different
woman, so there should be no autocorrelation to speak of, and followup time
is random.
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Mosteller & Tukey’s green book

Naturally, we all desire an adequate assessment of both the 
indications and their uncertainties, but we shouldn’t refuse 

good cake only because we can’t have frosting too.



Closing curtain: Thank you.


