UiT

THE ARCTIC UNIVERSITY OF NORWAY

Small data: practical modeling issues in human-model -omic data

Defense for the degree of Ph. D. Einar Holsbø February 8th, 2019

Act I: "Boy Bitten by a Lizard" (1590s)

Can we predict breast cancer metastasis from blood samples?

-Eiliv Lund, 4.5 years ago, quote made up

Data source: Siegel, R. L., Miller, K. D. and Jemal, A. (2017), Cancer statistics, 2017. CA: A Cancer Journal for Clinicians, 67: 7-30. doi:10.3322/caac.21387

Five-year survival probability,

Data source: Siegel, R. L., Miller, K. D. and Jemal, A. (2017), Cancer statistics, 2017. CA: A Cancer Journal for Clinicians, 67: 7-30. doi:10.3322/caac.21387

Five-year survival probability, various cancers

Goal: predict it, win the Nobel prize

Norwegian Women and Cancer

- all Norwegian women born between 1943-57.
- The data collection started in NOWAC in 1991. Includes blood
- methylation, metabolomics, and RNA-seq.

Prospective population-based cohort that tracks 34% (170 000) of

samples from 50.000 women, as well as more than 300 biopsies.

Now contains various -omics material: microarray mRNA, miRNA,

Enrollment

Enrollment

Enrollment

Time →

Prospective design nice because recruitment is blinded to outcome and exposure

Prospective design nice because recruitment is blinded to outcome and exposure

ow bias

E AT GC CG TA TA CG

DNA

CG TA TA CG

DNA

AT

GC

mRNA

E U C G G A A G G I I

DNA

AT

GC

CG

TA

TA

CG

mRNA

some useful protein

U C G A G

U U C G A A G

How much light do we see?

dim(gene_expression) ## [1] 88 12404

dim(gene_expression) ## [1] 88 12404 summary(days_to_diagnosis)
Min. 1st Qu. Median Mean 3rd Qu. Max. ## 6.0 117.8 189.5 186.8 269.2 358.0

dim(gene_expression) ## [1] 88 12404 summary(days_to_diagnosis) ## Min. 1st Qu. Median Mean 3rd Qu. Max. ## 6.0 117.8 189.5 186.8 269.2 358.0 summary(metastasis) *## FALSE TRUE* ## 66 22

dim(gene_expression) ## [1] 88 12404 summary(days_to_diagnosis) ## Min. 1st Qu. Median Mean 3rd Qu. Max. ## 6.0 117.8 189.5 186.8 269.2 358.0 summary(metastasis) *## FALSE TRUE* ## 66 22 table(metastasis, stratum) ## stratum *## metastasis screening interval clinical* ## FALSE10 13 43 ## TRUE 10 6 6

These are "small data" & we should be careful with them

A computer scientist's guide to precision medicine

- Step 1: pick some models
- Step 2: pick some scoring rules/performance metrics
- Step 3: "classification"

Scoring rule examples (aka. loss functions, aka. metrics)

- Accuracy: how many did we get right?
- Precision: how many correct "success" predictions did we do
- Recall: how many of the true successes did we detect

Scoring rule examples (aka. loss functions, aka. metrics)

p > .5? something else?

Decoupling score and decision threshold

• AUC: the probability of ranking success higher than failure

(aka. concordance probability)

Just trying some methods & scores

Just trying some methods & scores

Recall

Accuracy

Precision

Time (train + test)

Figures from Hastie, Tibshirani, and Friedman: The Elements of Statistical Learning

$\sum \left[\alpha \beta_i^2 + (1 - \alpha) |\beta_i| \right] \le t$

Figures from Hastie, Tibshirani, and Friedman: The Elements of Statistical Learning

Figures from Hastie, Tibshirani, and Friedman: The Elements of Statistical Learning

Trying different alphas

Figures show concordance (higher is better)

Alpha = 0

Trying different alphas

Alpha = 0

Figures show concordance (higher is better)

Finding the "best" parameter alpha by cross-validation

Finding the "best" parameter alpha by cross-validation

alpha

e intermission s

Act II: When you are engulfed in flames

Finding the "best" parameter alpha by cross-validation

alpha

Some "technical" sources of variation

- The big classic one: sample size
- Scoring rule
- Validation procedure

Some "technical" sources of variation

- The big classic one: sample size
- Scoring rule
- Validation procedure

Small data: sample size is more or less fixed in the human model

Typical sample sizes in transcriptomics

176 614 3372 18736

Small data: sample size is more or less fixed in the human model

Typical sample sizes in transcriptomics

Ethics, economy, logistics limit access to human obs.

18736

Some "technical" sources of variation

- The big classic one: sample size
- Scoring rule
- Validation procedure

Yet another scoring rule

Brier's score is the mean squared errors of predicted probabilities

$$\int (\hat{p}_i - p_i)^2$$

Some risk surfaces (risk = expected loss)

 $\log \frac{p}{1-p} = 1+x,$ $x \sim U[-6, 6]$

Some risk surfaces

Brier

intercept

$$\log \frac{p}{1-p} = 1+x,$$
$$x \sim U[-6, 6]$$

Brighter is better

Some risk surfaces

Brier

intercept

$$\log \frac{p}{1-p} = 1+x,$$
$$x \sim U[-6, 6]$$

Accuracy

intercept

Brighter is better

Some risk surfaces

Brier

$$\log \frac{p}{1-p} = 1+x,$$
$$x \sim U[-6, 6]$$

Accuracy

Concordance

Brighter is better

Some "technical" sources of variation

- The big classic one: sample size
- Scoring rule
- Validation procedure

Validation

- Holdout data
- Cross-validation
- Repeat CV
- The Bootstrap

Holdout data

Holdout data

Holdout data

i) Fit model

ii) Calculate score

ii) Score

i) Fit model

iii) Fit model

iii) Fit model

xi) Summarize by mean, sd

Repeated cross validation

It's exactly what you'd expect

Bootstrap

Bootstrap

Bootstrap

Bootstrap

"The bootstrap principle"

$T(\hat{F}^*, \hat{F}) \sim T(\hat{F}, F)$

 $\frac{\operatorname{Var}(T_1)}{\operatorname{Var}(T_2)}$

For two estimators, T_1, T_2 , of the same quantity :

 $\frac{\operatorname{Var}(T_1)}{\operatorname{Var}(T_2)}$

For two estimators, T_1, T_2 , of the same quantity :

All else being equal, pick the less variable one

Brier score estimated in different ways

Relative efficiency to split sample:

Rootetran .
CV:
Ronoat CV.

3.5 3.6 3.6

Brier score estimated in different ways

Relative efficiency to split sample:

Bootstrap:	3.5
CV:	3.6
Repeat CV:	3.6

Need 3–4 times as many obs. w/ split sample!

1. Small data: new observations are hard to get

1. Small data: new observations are hard to get 2. Optimize a less weird scoring rule

1. Small data: new observations are hard to get

2. Optimize a less weird scoring rule

3. Estimate with less variance

e intermission s

Act III: Hold Fast

Brier score + Bootstrap

	model 2.6	model 2.7
LIMMA-t	$.44 \pm .30$	$.76 \pm .20$
SAM	$.46 \pm .26$	$.75 \pm .24$
ANOVA-fs	$.51 \pm .29$	$.75 \pm .16$
ANOVA-s	$.41 \pm .57$	$.75 \pm .38$
t-test	$.65 \pm 1.5$	$.74 \pm .71$
ANOVA-f	$.44 \pm .25$	$.72 \pm .21$
intercent	5	
stratum	.0	
Stratum	.49 ± .033	
lasso	$.36 \pm 1.4$	

 $.81 \pm 3.3$

Concordance: Higher better, random guess is .5

ridge

	model 2.6	model 2.7
t-test	$.17 \pm .45$	$.17 \pm .33$
ANOVA-fs	$.27 \pm .13$	$.18 \pm .10$
SAM	$.34 \pm .11$	$.20 \pm .15$
ANOVA-s	$.33 \pm .22$	$.20 \pm .25$
ANOVA-f	$.31 \pm .084$	$.21 \pm .11$
LIMMA-t	$.35 \pm .14$	$.20 \pm .17$
intercept	$.19 \pm .010$	
stratum	$.22 \pm .029$	
lasso	$.27 \pm .19$	
ridge	$.23 \pm .30$	

Brier score: Lower better, null model is .19

Brier score + Bootstrap Concordance

	model 2.6	model 2.7
.IMMA-t	$.44 \pm .30$.76 ± 20
SAM	$.46 \pm .26$.75 ± .24
ANOVA-fs	.51 ± .29	.75 ±6
ANOVA-s	$.41 \pm .57$.75 ± .38
-test	$.65 \pm 1.5$.74 ± .71
ANOVA-f	$.44 \pm .25$	$.72 \pm 21$
ntercept	.5	
tratum	$.49 \pm .055$	
asso	$.36 \pm 1.4$	
idge	$.81 \pm 3.3$	

Concordance: Higher better, random guess is .5

			Brier
	model 2.6	mode	2.7
t-test	$.17 \pm .45$.17 ±	33
ANOVA-fs	$.27 \pm .13$.18 ±	10
SAM	$.34 \pm .11$	$.20 \pm$	15
ANOVA-s	$.33 \pm .22$	$.20 \pm$	25
ANOVA-f	$.31 \pm .084$	$.21 \pm$	11
LIMMA-t	$.35 \pm .14$.20 ±	.17
intercept	$.19 \pm .010$		
stratum	$.22 \pm .029$		
lasso	$.27 \pm .19$		

 $.23 \pm .30$

ridge

Brier score: Lower better, null model is .19

Brier score + Bootstrap

	model 2.6	model 2.7
LIMMA-t	$.44 \pm .30$	$.76 \pm .20$
SAM	$.46 \pm .26$	$.75 \pm .24$
ANOVA-fs	$.51 \pm .29$	$.75 \pm .16$
ANOVA-s	$.41 \pm .57$	$.75 \pm .38$
t-test	$.65 \pm 1.5$	$.74 \pm .71$
ANOVA-f	$.44 \pm .25$	$.72 \pm .21$
intercept	.5	
stratum	$.49 \pm .055$	
10000	.30 ± 1.4	
ridge	$.81 \pm 3.3$	

Concordance: Higher better, random guess is .5

	model 2.6	model 2.7
t-test	$.17 \pm .45$	$.17 \pm .33$
ANOVA-fs	$.27 \pm .13$	$.18 \pm .10$
SAM	$.34 \pm .11$	$.20 \pm .15$
ANOVA-s	$.33 \pm .22$	$.20 \pm .25$
ANOVA-f	$.31 \pm .084$	$.21 \pm .11$
LIMMA-t	$.35 \pm .14$	$.20 \pm .17$
intercept	$.19 \pm .010$	
stratum	$.22 \pm .029$	
lasso	$.27 \pm .19$	
ridge	$.23 \pm .30$	

Brier score: Lower better, null model is .19

Brier score + Bootstrap

	model 2.6	model 2.7
LIMMA-t	$.44 \pm .30$	$.76 \pm .20$
SAM	$.46 \pm .26$	$.75 \pm .24$
ANOVA-fs	$.51 \pm .29$	$.75 \pm .16$
ANOVA-s	$.41 \pm .57$	$.75 \pm .38$
t-test	$.65 \pm 1.5$	$.74 \pm .71$
ANOVA-f	$.44 \pm .25$	$.72 \pm .21$
intercept	.5	
stratum	.49 ± .055	
10000	.30 ± 1.4	
ridge	$.81 \pm 3.3$	

Concordance: Higher better, random guess is .5 In short mo

	model 2.6	model 2.7
t-test	$.17 \pm .45$	$.17 \pm .33$
ANOVA-fs	$.27 \pm .13$	$.18 \pm .10$
SAM	$.34 \pm .11$	$.20 \pm .15$
ANOVA-s	$.33 \pm .22$	$.20 \pm .25$
ANOVA-f	$.31 \pm .084$	$.21 \pm .11$
LIMMA-t	$.35 \pm .14$	$.20 \pm .17$
intercept	$.19 \pm .010$	
stratum	$.22 \pm .029$	
lasso	$.27 \pm .19$	

 $.23 \pm .30$

Brier score: Lower better, null model is .19 In short more lizards ahead

ridge

Reminder of likelihood penalties

 $\left| \beta_i^2 \le t \right|$

$\int \left[\alpha \beta_i^2 + (1 - \alpha) |\beta_i| \right] \le t$

 $\left|\beta_{i}\right| \leq t$

Need to choose t (aka lambda)

```
lambda <- cross_validate_glmnet(b)</pre>
```


nested cv in bootstrap boot <- boostrap_samples()</pre> for (b in boot) { }

Bias toward

```
lambda <- cross validate glmnet(b)</pre>
```


Instead choose lambda by AIC

AIC as a function of shrinkage parameter

Figures from Hastie, Tibshirani, and Friedman: The Elements of Statistical Learning

 $\int \left[\alpha \beta_i^2 + (1 - \alpha) |\beta_i| \right] \le t$

	model 2.6	model 2.7
LIMMA-t	$.44 \pm .30$	$.76 \pm .20$
SAM	$.46 \pm .26$	$.75 \pm .24$
ANOVA-fs	$.51 \pm .29$	$.75 \pm .16$
ANOVA-s	$.41 \pm .57$	$.75 \pm .38$
t-test	$.65 \pm 1.5$	$.74 \pm .71$
ANOVA-f	$.44 \pm .25$	$.72 \pm .21$

intercept	.5
stratum	$.49 \pm .055$
lasso	$.36 \pm 1.4$
ridge	$.81 \pm 3.3$

	model 2.6	model 2.7
t-test	$.17 \pm .45$	$.17 \pm .33$
ANOVA-fs	$.27 \pm .13$	$.18 \pm .10$
SAM	$.34 \pm .11$	$.20 \pm .15$
ANOVA-s	$.33 \pm .22$	$.20 \pm .25$
ANOVA-f	$.31 \pm .084$	$.21 \pm .11$
LIMMA-t	$.35 \pm .14$	$.20 \pm .17$

intercept	$.19 \pm .010$
stratum	$.22 \pm .029$
lasso	$.27 \pm .19$
ridge	$.23 \pm .30$

ElasticNet, alpha = .5								
LIMMA-t SAM ANOVA-fs ANOVA-s t-test ANOVA-f	model 2.6 $.44 \pm .30$ $.46 \pm .26$ $.51 \pm .29$ $.41 \pm .57$ $.65 \pm 1.5$ $.44 \pm .25$	model 2.7 $.76 \pm .20$ $.75 \pm .24$ $.75 \pm .16$ $.75 \pm .38$ $.74 \pm .71$ $.72 \pm .21$			t-test ANOVA-fs SAM ANOVA-s ANOVA-f LIMMA-t	model 2.6 $.17 \pm .45$ $.27 \pm .13$ $.34 \pm .11$ $.33 \pm .22$ $.31 \pm .084$ $.35 \pm .14$	model 2.7 $.17 \pm .33$ $.18 \pm .10$ $.20 \pm .15$ $.20 \pm .25$ $.21 \pm .11$ $20 \pm .17$	
intercept stratum lasso ridge	.5 $.49 \pm .055$ $.36 \pm 1.4$ $.81 \pm 3.3$		Use st	ratum in	format intercept stratum lasso ridge	0 $.19 \pm .010$ $.22 \pm .029$ $.27 \pm .19$ $.23 \pm .30$		

	model 2.6	model 2.7
LIMMA-t	$.44 \pm .30$	$.76 \pm .20$
SAM	$.46 \pm .26$	$.75 \pm .24$
ANOVA-fs	$.51 \pm .29$	$.75 \pm .16$
ANOVA-s	$.41 \pm .57$	$.75 \pm .38$
t-test	$.65 \pm 1.5$	$.74 \pm .71$
ANOVA-f	$.44 \pm .25$	$.72 \pm .21$

.5
$.49 \pm .055$
$.36 \pm 1.4$
$.81 \pm 3.3$

Brier score

	model 2.6	model 2.7
t-test	$.17 \pm .45$	$.17 \pm .33$
ANOVA-fs	$.27 \pm .13$	$.18 \pm .10$
SAM	$.34 \pm .11$	$.20 \pm .15$
ANOVA-s	$.33 \pm .22$	$.20 \pm .25$
ANOVA-f	$.31 \pm .084$	$.21 \pm .11$
LIMMA-t	$.35 \pm .14$	$.20 \pm .17$

$.19 \pm .010$
$.22 \pm .029$
$.27 \pm .19$
$.23 \pm .30$

Does not

Calibration curve for predictions

108 genes selected

GRK5 ^{<i>a</i>}	0.853	C10rf115	0.290	ANO8	0.221	FBLN5	0.157
GPATCH4	0.682	LOC654055	0.287	PTTG1IP	0.219	BLMH	0.156
GNGT2	0.474	RNF214	0.280	3NDg8gVCd ^b	0.218	FCRL3	0.149
PDGFD ^c	0.467	SULT1A1	0.278	USF1	0.216	TDRD9	0.143
FAM24B	0.457	ZNF365	0.271	BCCIP	0.210	ACY1	0.142
PTPRN2	0.442	USE1	0.267	MGC29506	0.209	ZFP57	0.142
CBLB	0.440	DNMT ₃ A	0.267	GRK5 ^{<i>a</i>}	0.207	SLIC1	0.138
PDCL	0.410	LOC649210	0.266	WTIP	0.205	PICK1	0.135
RASA2	0.380	CNTNAP2	0.265	BCL10	0.204	RTN4IP1	0.134
C11orf48	0.376	IL2RA	0.265	DLGAP2	0.200	CDCA7L	0.132
TCEB1	0.374	CCT5	0.264	HRAS	0.199	BEX4	0.131
CAPN ₃	0.354	R3HDM1	0.263	RAD1	0.189	FCAR	0.130
STK19	0.351	MRPL43	0.260	PRKCE	0.187	ANKRD35	0.111
GUCY1A3	0.348	SLC38A1	0.256	UBAP2L	0.186	USP39	0.109
ZDHHC11	0.345	GNG8	0.255	BPI	0.186	KIAA0495	0.106
SULT1A3	0.336	PLA2G4C	0.251	DTX1	0.184	BRI3BP	0.106
Z6FIQGkeo ^d	0.335	TCF ₄	0.248	LASS ₅	0.182	TUBA4A	0.105

108 genes selected									
GRK5 ^a	0.853	C10rf115	0.290	ANO8		0.221	FBLN5	0.157	
GPATCH4	0.682	LOC654055	0.287	PTTG1IP		0.219	BLMH	0.156	
GNGT2	0.474	RNF214	0.280	BNDg8gVCd.	. b	0.218	FCRL3	0.149	
PDGFD ^c	0.467	SULT1A1	0.278	JSF1		0.216	TDRD9	0.143	
FAM24B	0.457	ZNF365	0.271	I CCIP		0.210	ACY1	0.142	
PTPRN2	0.442	USE1	0.267	NGC29506		0.209	ZFP57	0.142	
CBLB	0.440	DNMT3A	0.267	CRK5 ^a		0.207	S LIC1	0.138	
PDCL	0.410	LOC649210	0.266	V/TIP		0.205	P CK1	0.135	
RASA2	0.380	CNTNAP2	0.265	F CL10		0.204	R TN4IP1	0.134	
C11orf48	0.376	I .2RA	0.265	DLGAP2		0.200	CDCA7L	0.132	
TCEB1	0.374	CT ₅	0.264	HRAS		0.199	BEX4	0.131	
CAPN ₃	0.354	R ₃ HDM ₁	0.263	RAD1		0.189	FCAR	0.130	
STK19	0.351	MRPL43	0.260	PRKCE		0.187	ANKRD35	0.111	
GUCY1A3	0.348	SLC38A1	0.256	UBAP ₂ L		0.186	USP39	0.109	
ZDHHC11	0.345	GNG8	0.255	BPI		0.185	KIAA0495	0.106	
SULT1A3	0.336	PLA2G4C	0.251	DTX1		0.184	BRI3BP	0.106	
Z6FIQGkeo.	. ^d 0.335	TCF4	0.248	LASS ₅		0.182	TUBA4A	0.105	
FAM89A	v colori	ion frec	nuencie	e uneta	hlo	sian	atures		
rh13dQX04				S. unsta		Sign			

STE CII

. . .
Please turn to page 22 in the required reading

VAV3 IGLL1 CBLB MGC29506 SLC38A1 TCF4 ITM2C GUCY1A3 GSTT1 FCRL3

IDH1 ANO8 CCDC90B **DNMT3A** SLIC1 WEE1 DLGAP2 SPG3A PPAP2A TAF6

Observations

Bootstrapped difference in medians w/middle 80% of bootstrap distribution

Some genes tend to be selected together

Table 2.3: Genes that tend to be selected together, ordered alphabetically.

		LANCIA		
ADIPOR2	FAM89A	LANCL2	PTPRN2	SULI 1A3
C11orf48	GNG8	LOC647460	R3HDM1	TCEB1
C10rf115	GNGT2	LOC654055	RASA2	TCF4
CAPN3	GPATCH4	PDCL	rh13dQXo	WEE1
CBLB	GRK5	PDGFD	SERPINE2	Z6FIQGkeo
DNMT ₃ A	GUCY1A3	PDGFD	STK19	ZDHHC11
FAM24B	ITM2C	PRPSAP2	SULT1A1	ZNF365

https://commons.wikimedia.org/wiki/File:Biologist_Victoria_Achkasova_20150529.jpg

At this point maybe call a biologist

entration (1) to the

1000s of measurements, maybe 100 observations

- 1000s of measurements, maybe 100 observations
- Validation matters more than you think

- 1000s of measurements, maybe 100 observations
- Validation matters more than you think
- Model search difficult

- 1000s of measurements, maybe 100 observations
- Validation matters more than you think
- Model search difficult
- I suggest to make more assumptions

Good

Cheap

Careful validation

Agnostic modeling

Naturally, we all desire an adequate assessment of both the indications and their uncertainties, but we shouldn't refuse good cake only because we can't have frosting too.

Mosteller & Tukey's green book

