Learn to live with lack of rejection

Einar Holsbø & Kajsa Møllersen, 21. Oct 2019

Your datasets are tiny

- Your datasets are tiny
- Typical data sizes limit the usefulness of hypothesis tests

- Your datasets are tiny
- Typical data sizes limit the usefulness of hypothesis tests
- Typical avg. fold changes fall outside those limits

- Your datasets are tiny
- Typical data sizes limit the usefulness of hypothesis tests
- Typical avg. fold changes fall outside those limits
- Leads to all kinds of errors

- Your datasets are tiny
- Typical data sizes limit the usefulness of hypothesis tests
- Typical avg. fold changes fall outside those limits
- Leads to all kinds of errors
- There is a better way; Kajsa will explain

More than 90% of datasets comprise under 100 observations

Components of a hypothesis test

- 1. Mathematical model of what "nothing" looks like: the null model
- 2. Mathematical way of comparing data to "nothing": a statistic
- 3. A decision rule for what is far enough away from "nothing" to be interesting

$$\bar{x} - \mu$$
s.e. (\bar{x})

"Sighal"

$$\mathbf{S.e.}(\bar{x})$$

"Sighal"

How many times larger is the signal than the noise?

Observed s/n not very likely

Observed s/n not very likely

The [number of standard deviations] for which

The [number of standard deviations] for which P=.05, or 1 in 20, is 1.96 or nearly 2; it is

The [number of standard deviations] for which P=.05, or 1 in 20, is 1.96 or nearly 2; it is convenient to take this point as a limit in judging

The [number of standard deviations] for which P=.05, or 1 in 20, is 1.96 or nearly 2; it is convenient to take this point as a limit in judging whether a deviation is to be considered

The [number of standard deviations] for which P=.05, or 1 in 20, is 1.96 or nearly 2; it is convenient to take this point as a limit in judging whether a deviation is to be considered significant or not.

The [number of standard deviations] for which P=.05, or 1 in 20, is 1.96 or nearly 2; it is convenient to take this point as a limit in judging whether a deviation is to be considered significant or not.

RA Fisher
 (Statistical Methods for Research Workers)

Use p < .05, it's the easiest

OK I will do this for always and ever

xoxo from the scientific community

Back to the 100 observations

- If we observe fold change so that it is 2 times the noise, we "win"
- Implies that true fold change should at least be 4 times the noise if we want to almost surely win
- Noise shrinks with the inverse of square root of number of observations
- Details in The Book

Back to the 100 observations

$$\frac{\mu}{\text{s.e.}(\bar{x})} > 4 \iff \mu > 4 \text{s.e.}(\bar{x}),$$

$$\text{s.e.}(\bar{x}) = \frac{\sigma}{\sqrt{n}}$$

Back to the 100 observations

$$\frac{\mu}{\text{s.e.}(\bar{x})} > 4 \iff \mu > 4 \text{s.e.}(\bar{x}),$$
$$\text{s.e.}(\bar{x}) = \frac{\sigma}{\sqrt{n}}$$

Smallest detectable means in number of standard deviations

	Difference	from zero:	$.4 \epsilon$
--	------------	------------	---------------

Difference between two groups of 50: $.8\sigma$

Subgroups of 25, diff from zero: 1.1σ

Difference between subgroups: 1.6σ

Statistical power is tragic in data such as these

Power to detect difference between two groups of 50. One test, varying significance levels.

The "wins" are overestimated by like 200%

What to expect

Confidence	99%	95%	90%	80%	70%
Magnitide error	2.3	2.0	1.8	1.6	1.5
Power	12%	28%	39%	53%	63%

What to expect

Confidence	99%	95%	90%	80%	70%
Magnitide error	2.3	2.0	1.8	1.6	1.5
Power	12%	28%	39%	53%	63%

Food for thought: are you sure hypothesis testing is for you?

Humble scholars of uncertainty

BE A BIOLOGIST!

- Ask a biology question
- Let the data answer
- Use a statistical tool to quantify the uncertainty

Be a biologist - use familiar statistics tool

- Choose an α .
- Calculate the mean difference which ones are interesting?
 Sort accordingly.
- Confidence intervals for those.
- Pick those with a low p-value, not necessarily lower than α .

