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Q: can we predict metastasis from
gene expression measurements in
pblood samples”



A: maybe



Norwegian Women and Cancer (NOWAC)

* Prospective case—control stuady

e Blood samples + guestionnaires
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1 year before diagnosis



Data at a glance

dim(gene expression)

## [1] — 88 12404

summary (days to diagnosis)

e Min. 1st Qu. Median Mean 3rd OQu. Max.
i 6.0 117.8 189.5 186.8 269.2 358.0

summary (metastasis)
## FALSE TRUE
#H 66 22

table(metastasis, stratum)

7H stratum
## metastasis screening interval clinical
P FALSE 43 10 13

HH TRUE 6 6 10



How to do predictive modelling

1. Pick some of your favorite models
2. Evaluate model performance by cross-validation

3. Fit tuning parameters by nested cross-validation



Some models

Penalized logistic regression

p(Y|z)

— Bo + Brx1 + . ..
1 —p(Y|x)

find ,@ s.t. log




Some models

can only be inside these shapes

//g\

From Hastie, Tibshirani, and Friedman: The Elements of Statistical Learning




Some models

Nearest centroids

From Hastie, Tibshirani, and Friedman: The Elements of Statistical Learning



Cross validation



Cross validation




Cross valigdation
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Finding the “best” parameter alpha by

cross-validation




Finding the “best” parameter alpha by
cross-validation

This exercise raises some questions



Cross validation is almost useless to me

Recall Precision
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Cross validation is almost useless to me

Recall Precision
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| spent actual time Interpreting plots like these.........................



Solution: resampling

AUC ©

alpha



Solution: resampling

Simply.do alidations

alpha



Another confusing thing

AUC for different models

stability (enet) | I I
elastic net I
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Another confusing thing

AUC for different models

stability (enet) | I I
elastic net I
stability (lasso) L |
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The line for random guess



2 ways to get AUROC < .5

A. You made a mistake calculating AUC

B. There is something v. strange with the data



A simulated paradox

One “gene,” X

Response 1 or O

Two strata: 1 and O

f stratum == response, x ~ N(1, variance)

Else, x ~ N(O, variance)
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“You have to stratity.”

Ciliv Lund to myself, like two-and-a-half years ago




INncluding stratum gives expected null behavior

AUC when including strata
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Introducing some bias: focus on a likely subspace

* In high dimensions, bias is your friend

* [heory: there Is something going on Iin the gene expression as we
get closer to diagnosis

 Rank by linear model:

expression = By + f1time + fometastasis + S3time X metastasis + error



Top three
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mproved predictions

AUC for models with preselection
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|_ower variance/higher stability

Stability with/without preselection

centroids + time I | I
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elastic net + time |
elastic net I
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Stability = set overlap between predictive genes across two resmaplings



| essons/perspectives

Cross validation can actually be super high in variance, be careful
But be especially careful of holdout set validation
Remember Simpson’s paradox, watch your strata

Be critical of Signatures



| essons/perspectives

« OTOH: There seems to be some weak signal here
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Thank you!

email: einar@cs.uit.no
twitter: @ 0xeinar
github: github.com/3inar

Slides available online at 3inar.github.io/talks/



