Opposing forces in big data

Big data need big model

Einar Holsbg, 261020



Learning outcome:
expectation propagation
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 More data supports richer models: Unconstrained estimation of p numbers
requires a sample size N such that you have Kp observations in the smallest
subgroup of your data. K=170 often cited, but known to be optimistic in real
life.

 More data needs richer models: big data is usually found data, so any
iInsights must come from a model that corrects for this. Also, variance In
estimation often decreases as 1/sqrt(N).

 More data prohibits richer models: Eg. inverting a matrix is ) (/NS).
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Motivation: prescription data
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Motivation: prescription data

Rate of adverse events for chemical substances
probably similar within chemical subgroup
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ABSTRACT

Belief networks are directed acyclic graphs in which the nodes represent propositions (or variables),
the arcs signify direct dependencies between the linked propositions, and the strengths of these
dependencies are quantified by conditional probabilities. A network of this sort can be used to
represent the generic knowledge of a domain expert, and it turns into a computational architecture if
the links are used not merely for storing factual knowledge but also for directing and activating the
data flow in the computations which manipulate this knowledge.

The first part of the paper deals with the task of fusing and propagating the impacts of new
information through the networks in such a way that, when equilibrium is reached, each proposition
will be assigned a measure of belief consistent with the axioms of probability theory. It is shown that
if the network is singly connected (e.g. tree-structured), then probabilities can be updated by local
propagation in an isomorphic network of parallel and autonomous processors and that the impact of
new information can be imparted to all propositions in time proportional to the longest path in the
network.

The second part of the paper deals with the problem of finding a tree-structured representation for
a collection of probabilistically coupled propositions using auxiliary (dummy) variables, colloquially
called ““hidden causes.” It is shown that if such a tree-structured representation exists, then it is
possible to uniquely uncover the topology of the tree by observing pairwise dependencies among the
available propositions (i.e., the leaves of the tree). The entire tree structure, including the strengths of
all internal relationships, can be reconstructed in time proportional to n log n, where n is the number
of leaves.

1. Introduction

This study was motivated by attempts to devise a computational model for
humans’ inferential reasoning, namely, the mechanism by which people inte-
grate data from multiple sources and generate a coherent interpretation of that
data. Since the knowledge from which inferences are drawn is mostly judg-

* This work was supported in part by the National Science Foundation, Grant#DSR 83-13875.

Artificial Intelligence 29 (1986) 241-288
0004-3702/86/$3.50 © 1986, Elsevier Science Publishers B.V. (North-Holland)

* EXxpectation Propagation algorithm

fairly old, presented in Thomas
Minka’s PhD dissertation in 2001

* [he target computation (detalls to
follow) can be seen as sending

messages along a factor graph

 Message passing idea traces back to
Judea Pearl in 1986
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Factorization not unique

Partitioning along data Top-down computational view:
perhaps particularly simple nice because we get so split up our Big Data

(always possible with the  Bottom-up security view:

- y
usual iid assumptions) nice because we don’t need to share our Secret Data



Goal: approximate full function by
approximating at the “sites” fi passing
values along edges in the graph iteratively
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Must iterate until convergence;
convergence not guaranteed
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The current g is needed at all sites

Makes for a simple distributed architecture

VEHTARI ET AL.

central node »{ site node

g(0) < gk(0)  yk

k=1,2,....K

Figure 1: The EP framework for partitioned data. The central node stores the current
parameters for the global approximation ¢g(f). Each site node k = 1,2,..., K
stores the current parameters for the site approximation gx(6) and the assigned
partition of the data y,. The central node sends the parameters of g(#) to the
site nodes. In parallel, the site nodes update gi(6) and send back the difference in
the parameters.
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The current g is needed at all sites

Makes for a simple distributed architecture
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Figure 1: The EP framework for partitioned data. The central node stores the current node
parameters for the global approximation ¢g(f). Each site node k = 1,2,..., K
stores the current parameters for the site approximation gx(6) and the assigned
partition of the data y,. The central node sends the parameters of g(#) to the
site nodes. In parallel, the site nodes update gi(6) and send back the difference in training data

the parameters.

Figure 4: Architecture of a parameter server communicat-
ing with several groups of workers.



Tradeoffs and considerations

» Data partitioning: More sites = more parallelism, but worse approximations
 Exact form of g: need not be Gaussian, often is

* |nitial estimates influence convergence

 How to estimate gx (Vehtari &al. do MCMGC, the original EP was closed-form)
* Asynchronous updates would be nice if some sites are small

 Damping of updates to global g7 (analogous to step size in gradient descent)

* Potential numerical stability issues working with covariance matrices



Tradeoffs and
considerations

No free lunches!




